TD 27-28: Applications linéaires

- Applications linéaires

Exercice 1. Les applications suivantes suivantes sont-elles linéaires ?

1)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
 définie par $f(x, y) = (x + y, x - 2y, 0)$

2)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 définie par $f(x,y) = (2x+y,y+1)$

3)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 définie par $f(x, y) = (xy, yx)$

4)
$$f: \mathbb{C}^2 \to \mathbb{C}$$
 définie par $f(z_1, z_2) = z_1 - \overline{z_2}$

 $(\mathbb{C}^2 \text{ et } \mathbb{C} \text{ sont vus comme des } \mathbb{C}\text{-e.v.})$

5)
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^3$$
 définie par $f(u) = (u_0, u_1, u_2)$

6)
$$f: \mathbb{K}_2[X] \to \mathbb{K}$$
 définie par $f(P) = \int_0^1 P(t)dt$

7)
$$f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}$$
 définie par $f\left(\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\right) = a + d$

8)
$$\varphi: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$$
 définie par $\varphi(f) = f'' - 4f$

9)
$$\varphi: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$$
 définie par $\varphi(f) = 2ff'$

Exercice 2. Déterminer les applications linéaires $f: \mathbb{R}^3 \to \mathbb{R}^3$ qui vérifient

$$f(1,0,0) = (-2,0,2)$$
 $f(0,1,0) = (0,3,0)$ $f(0,0,1) = (-4,0,4)$

Exercice 3. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire qui vérifie

$$f(1,4,1) = (4,-1,4)$$
 $f(-2,3,3) = (3,2,1)$ $f(0,2,1) = (1,-5,5)$

- 1) Justifier l'existence et l'unicité de f.
- 2) Soit $(x, y, z) \in \mathbb{R}^3$. Déterminer f(x, y, z).

Image, noyau, rang (dimension finie)

Exercice 4. On considère l'application $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par

$$f(x, y, z) = (x + y + z, 3x - 5y + z)$$

- 1) Déterminer $\operatorname{Ker} f$, ainsi qu'une base et sa dimension.
- 2) Déterminer ${\rm Im}\, f$, ainsi qu'une base et sa dimension.
- 3) f est-elle injective ? surjective ? bijective ?

Exercice 5. On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par

$$f(x,y) = (x, x+y, x+2y)$$

- 1) Déterminer Ker f, ainsi qu'une base et sa dimension.
- 2) Déterminer $\operatorname{Im} f$, ainsi qu'une base et sa dimension.
- 3) f est-elle injective ? surjective ? bijective ?

Exercice 6. On considère l'application $f: \mathbb{C}^3 \to \mathbb{C}^3$ définie par

$$f(x, y, z) = (-2x + y + z, x - y, x - 2y + z)$$

- 1) Déterminer Ker f, ainsi qu'une base et sa dimension.
- 2) Déterminer Im f, ainsi qu'une base et sa dimension.
- 3) *f* est-elle injective ? surjective ? bijective ?

Exercice 7. Soit $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$. Existe-t-il une application $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$ de noyau F?

Exercice 8. Soit α, β, γ trois réels distincts et $f : \mathbb{R}_2[X] \to \mathbb{R}^3$ l'application définie par $f(P) = (P(\alpha), P(\beta), P(\gamma))$.

- 1) Déterminer Ker f, ainsi qu'une base et sa dimension.
- 2) En déduire Im f par un résultat de dimension.
- 3) Mais au fait, étant donné $(a,b,c) \in \text{Im } f$, quel(s) polynôme(s) $P \in \mathbb{R}_2[X]$ vérifie(nt) f(P) = (a,b,c) ?

Exercice 9. On pose $E = \mathcal{C}(\mathbb{R})$ et $f_1, f_2, f_3, f_4 \in E$ les fonctions définies par :

$$f_1(t) = \sin t$$
 $f_2(t) = \cos t$ $f_3(t) = t \sin t$ $f_4(t) = t \cos t$

Enfin on définit $F = \text{Vect}(f_1, f_2, f_3, f_4)$.

- 1) Montrer que $\mathcal{B}=(f_1,f_2,f_3,f_4)$ est une base de F. En déduire sa dimension.
- 2) On considère l'application $D: f \mapsto f'$. Montrer que D est un endomorphisme de F.
- 3) Déterminer $\operatorname{Ker} D$ et $\operatorname{Im} D$. Que peut-on en déduire $\operatorname{sur} D$?

 $^-$ Image, noyau, rang (dimension quelconque) $\,-\,$

Exercice 10. On considère l'application $f: \mathbb{K}[X] \to \mathbb{K}[X]$ définie par f(P) = P'.

- 1) Déterminer $\operatorname{Ker} f$ et $\operatorname{Im} f$.
- 2) *f* est-elle injective ? surjective ? bijective ?

Exercice 11. On définit $\varphi : \mathbb{C}^{\mathbb{N}} \to \mathbb{C}^{\mathbb{N}}$ par

$$\varphi: (u_n)_{n\in\mathbb{N}} \mapsto (u_{n+1} - u_n)_{n\in\mathbb{N}}$$

Montrer que φ est linéaire et déterminer Ker φ et Im φ . Est-ce que φ est injective ? surjective ?

Exercice 12. Soit E, F, G trois \mathbb{K} -e.v. puis $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

- 1) Montrer que $g \circ f = 0$ si et seulement si Im $f \subset \text{Ker } g$.
- 2) Montrer que Ker $f \subset \operatorname{Ker}(g \circ f)$ et que $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$.
- 3) En déduire que si $g \circ f$ est un isomorphisme, alors f est injective et g est surjective.

Exercice 13. Soit E un e.v. et $f \in \mathcal{L}(E)$. Montrer les assertions suivantes :

$$\operatorname{Ker} f \subset \operatorname{Ker} f^2 \qquad \qquad \operatorname{Ker} f = \operatorname{Ker} f^2 \iff \operatorname{Ker} f \cap \operatorname{Im} f = \{0_E\}$$

$$\operatorname{Im} f^2 \subset \operatorname{Im} f \qquad \qquad \operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Ker} f + \operatorname{Im} f = E$$

G. Peltier 2/3

Projecteurs, symétries, etc.

Exercice 14. Déterminer si les applications linéaires suivantes sont des projecteurs ou des symétries, et déterminer leurs éléments caractéristiques :

- 1) $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (x, -2x y)
- 2) $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x + y z, x + y z, x + y z)
- 3) $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par $f(x, y, z) = \frac{1}{2}(x z, 2y, -x + z)$
- 4) $f_A: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par f(P) = R, où R est le reste de la division euclidienne de P par $A \in \mathbb{R}[X]$ fixé.

Exercice 15. Déterminer l'expression :

- 1) Du projecteur $p \in \mathcal{L}(\mathbb{R}^2)$ sur F = Vect((0,1)) parallèlement à G = Vect((1,1)).
- 2) De la symétrie $s \in \mathcal{L}(\mathbb{R}^2)$ par rapport à F et parallèlement à G (définis ci-dessus).
- 3) De la symétrie $s \in \mathcal{L}(\mathbb{R}^3)$ par rapport à F = Vect((1,2,3)) et parallèlement à G = Vect((1,0,0),(1,1,0)).
- 4) Du projecteur $p \in \mathcal{L}(\mathbb{R}^3)$ sur G et parallèlement à F (définis ci-dessus).

Exercice 16. Soit $p \in \mathcal{L}(E)$ et $q = \mathrm{id}_E - p$.

- 1) Montrer que p est un projecteur si et seulement si q est un projecteur.
- 2) On suppose que p est un projecteur. Montrer que $\operatorname{Im} p = \operatorname{Ker} q$ et que $\operatorname{Ker} p = \operatorname{Im} q$.

Exercice 17. Soit p, q deux projecteurs de E. Montrer que

$$\operatorname{Ker} p = \operatorname{Ker} q \iff (p \circ q = p \quad \text{et} \quad q \circ p = q)$$

$$\operatorname{Im} p = \operatorname{Im} q \iff (p \circ q = q \quad \text{et} \quad q \circ p = p)$$

——— Formes linéaires —

Exercice 18. On pose $E:=\mathbb{R}^2$ et $f,g\in E^*$ les applications

$$f(x,y) = x + y g(x,y) = x - y$$

- 1) Montrer que (f,g) forme une base de E^* .
- 2) Déterminer les coordonnées de $p:(x,y)\mapsto x$ et de $q:(x,y)\mapsto y$ selon la base (f,g).
- 3) Trouver une base (u, v) de E telle que (f, g) soit la base duale de (u, v).

Exercice 19. Soit E un \mathbb{K} -e.v. et $f \in E^*$. Montrer que f est surjective ou identiquement nulle.

Exercice 20. On considère l'ensemble $E = \mathbb{R}_n[X]$. Pour tout $k \in [0, n]$ on pose $\varphi_k : E \to \mathbb{R}$ définie par $\varphi_k(P) = P(k)$.

- 1) Montrer que pour tout $k \in [0, n]$, on a $\varphi_k \in E^*$.
- 2) Montrer que $(\varphi_0, \dots, \varphi_n)$ est une base de E^* .
- 3) En déduire qu'il existe $\lambda_0, \cdots, \lambda_n \in \mathbb{R}$ tels que :

$$\forall P \in \mathbb{R}_n[X]$$

$$\int_0^n P(t)dt = \lambda_0 P(0) + \lambda_1 P(1) + \ldots + \lambda_n P(n)$$

Remarque: on peut montrer le même résultat si on remplace l'intégrale ci-dessus par $\int_a^b P(t)dt$ avec $a,b \in \mathbb{R}$ quelconques. Cependant, les $\lambda_0, \cdots, \lambda_n$ dépendront de a,b.